Thermophysical properties of the ternary mixture ethanol + n-hexane + n-octane in function of the temperature

gpch20_v051_i03_coverPCL-50-6-2012-798-811

 

 

 

 

 

 

This article presents  the analysis of the following physical properties  such as  refractive   indices,   excess  molar   volumes,   sound   velocity   and   the temperature  dependence   of   the   ternary   system   ethanol þ n-hexane þ n-octane   in   the   temperature  range   288.15–323.15 K   at   atmospheric pressure. The derived properties are calculated from data obtained experimentally  and fitted to Cibulka  equation.

 

Share on Google+Share on FacebookTweet about this on TwitterShare on LinkedInEmail this to someonePrint this page

Refractive indices, excess molar volumes and isentropic compressibilities of the mixture of ethanol + n-hexane + n-nonane in function of the temperature

gpch20_v051_i03_coverPCL-51-3-2013-403-413

 

 

 

 

This study presents the analysis of different thermodynamic properties (refractive  indices, excess molar  volumes and  ultrasonic  velocity) and  the temperature  dependence   of  the   ternary   mixture   ethanol + n-hexane + n-nonane  at  the  range  288.15–323.15 K  and  atmospheric   pressure.  The derived properties  were computed  from experimental  data  and were fitted to the Cibulka  equation.

Share on Google+Share on FacebookTweet about this on TwitterShare on LinkedInEmail this to someonePrint this page

Temperature dependence of the derived properties of mixtures containing chlorobenzene and aliphatic linear alkanes (C6–C12)

gpch20_v051_i03_coverPCL-48-5-2010-661-681

 

 

 

This  article  reports  experimental densities, refractive indices and speeds of  sound  of  the  binary  mixtures  chlorobenzene + (n-hexane,  n-heptane, n-octane,   n-nonane,   n-decane,   n-undecane   or  n-dodecane)   and  speeds of sound  of the ternary
mixtures  chlorobenzene + n-hexane + (n-undecane or  n-dodecane)   at  298.15
K  and  atmospheric   pressure,  over  the  whole concentration range. The corresponding derived properties  were computed from the experimental data.
The results were fitted by means of the Redlich–Kister equation  for binary  mixtures and the Nagata  equation  for ternary mixtures. A set of estimation methods were applied, and an interpretation in terms  of structure  and length  of molecular  chain  of the n-alkane
molecules was made

Share on Google+Share on FacebookTweet about this on TwitterShare on LinkedInEmail this to someonePrint this page

Refractive indices, excess molar volumes and isentropic compressibilities of the mixture of ethanol + n-hexane + n-nonane in function of the temperature

http://dx.doi.org/10.1080/00319104.2012.737792

 

gpch20_v051_i03_cover

 

 

 

 

This study presents the analysis of different thermodinamic properties and the temperature dependence of the ternary mixture etanol + n-hexane – n-nonane at the range 299.15-323.15 K and atmospheric pressure.

Share on Google+Share on FacebookTweet about this on TwitterShare on LinkedInEmail this to someonePrint this page

Changes of refractive indices of the ternary mixtures chlorobenzene + n-hexane + (n-nonane or n-decane) at 298.15 K

gpch20_v051_i03_coverPCL-42-1-2004-63-74

 

 

 

The measures of the refractive índices of the ternary mixtures chlorobenzene + n-hexane + (n-nonane or n-decane) have done at 298.15 and atmospheric pressure.

Share on Google+Share on FacebookTweet about this on TwitterShare on LinkedInEmail this to someonePrint this page

Temperature influence on solution properties of ethanol + n-alkane mixtures

JMLJML-135-2007-105-114

 

 

 

This paper contains the results of a new experimental study of the effect of temperature on density, refractive index on mixing and ultrasonic velocity for a number of linear n-alkanes conbined with ethanol. A perusal of deviations between the experimental and calculated derived magnitudes shows that the predictive procedures give a qualitative estimation for the studied mixtures due to their high nonideality.

Share on Google+Share on FacebookTweet about this on TwitterShare on LinkedInEmail this to someonePrint this page